Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7315, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951985

RESUMEN

Bioresorbable bioelectronics, with their natural degradation properties, hold significant potential to eliminate the need for surgical removal. Despite notable achievements, two major challenges hinder their practical application in medical settings. First, they necessitate sustainable energy solutions with biodegradable components via biosafe powering mechanisms. More importantly, reliability in their function is undermined by unpredictable device lifetimes due to the complex polymer degradation kinetics. Here, we propose an on-demand bioresorbable neurostimulator to address these issues, thus allowing for clinical operations to be manipulated using biosafe ultrasound sources. Our ultrasound-mediated transient mechanism enables (1) electrical stimulation through transcutaneous ultrasound-driven triboelectricity and (2) rapid device elimination using high-intensity ultrasound without adverse health effects. Furthermore, we perform neurophysiological analyses to show that our neurostimulator provides therapeutic benefits for both compression peripheral nerve injury and hereditary peripheral neuropathy. We anticipate that the on-demand bioresorbable neurostimulator will prove useful in the development of medical implants to treat peripheral neuropathy.


Asunto(s)
Implantes Absorbibles , Traumatismos de los Nervios Periféricos , Humanos , Reproducibilidad de los Resultados , Física , Estimulación Eléctrica
2.
Chem Rev ; 123(19): 11559-11618, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756249

RESUMEN

With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.

3.
Sci Adv ; 8(1): eabl8423, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995120

RESUMEN

On-demand transient electronics, technologies referring subsequent material disintegration under well-defined triggering events and programmed time lines, offer exceptional clinical experiences in diagnosis, treatment, and rehabilitation. Despite potential benefits, such as the elimination of surgical device removal and reduction of long-term inimical effects, their use is limited by the nontransient conventional power supplies. Here, we report an ultrasound-mediated transient triboelectric nanogenerator (TENG) where ultrasound determines energy generation and degradation period. Our findings on finite element method simulation show that porous structures of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) play an essential role in the triggering transient process of our device under high-intensity ultrasound. Besides, the addition of polyethylene glycol improves triboelectric output performance; the voltage output increased by 58.5%, from 2.625 to 4.160 V. We successfully demonstrate the tunable transient performances by ex vivo experiment using a porcine tissue. This study provides insight into practical use of implantable TENGs based on ultrasound-triggered transient material design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...